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I.   INTRODUCTION 

Fractional calculus is a natural extension of the traditional calculus. In fact, since the beginning of the theory of differential 

and integral calculus, some mathematicians have studied their ideas on the calculation of non-integer order derivatives and 

integrals. During the 18th and 19th centuries, there were many famous scientists such as Euler, Laplace, Fourier, Abel, 

Liouville, Grunwald, Letnikov, Riemann, Laurent, Heaviside, and some others who reported interesting results within 

fractional calculus. 

In recent years, fractional calculus has become an increasingly popular research area due to its effective applications in 

different scientific fields such as economics, viscoelasticity, physics, mechanics, biology, electrical engineering, control 

theory, and so on [1-9]. However, the definition of fractional derivative is not unique. The commonly used definitions 

include Riemann-Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional 

derivative, and Jumarie’s modified R-L fractional derivative [10-13]. Since Jumarie type of R-L fractional derivative helps 

to avoid non-zero fractional derivative of constant function, it is easier to use this definition to connect fractional calculus 

with traditional calculus. 

In this paper, based on Jumarie type of R-L fractional calculus, we evaluate the following 𝛼-fractional integral: 

                                                                         ( 𝐼0 𝑥
𝛼) [ 𝐿𝑛𝛼(𝑥𝛼)⨂𝐿𝑛𝛼 (1 −

1

Γ(𝛼+1)
𝑥𝛼)] ,                                                  (1) 

where 0 < 𝛼 ≤ 1, and  0 <
1

Γ(𝛼+1)
𝑥𝛼 < 1. Fractional L’Hospital’s rule, integration by parts for fractional calculus, and a 

new multiplication of fractional analytic functions play important roles in this paper. In fact, our result is the generalization 

of traditional calculus result. 

II.   PRELIMINARIES 

Firstly, the fractional derivative used in this paper and its properties are introduced below. 

Definition 2.1 ([14]): Assume that 0 < 𝛼 ≤ 1, and 𝑥0 is a real number. The Jumarie’s modified Riemann-Liouville (R-L) 

𝛼-fractional derivative is defined by 

                                                                        ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 .                                                  (2) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 
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                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                          (3) 

where Γ( ) is the gamma function.  

Proposition 2.2 ([15]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                                   ( 𝐷0 𝑥
𝛼)[𝑥𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
𝑥𝛽−𝛼,                                                              (4) 

and 

                                                                                               ( 𝐷0 𝑥
𝛼)[𝐶] = 0.                                                                         (5) 

Next, we introduce the definition of fractional analytic function. 

Definition 2.3 ([16]): Assume that 𝑥 and 𝑎𝑘 are real numbers for all 𝑘, and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 can 

be expressed as an 𝛼-fractional power series, i.e., 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0 , then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional 

analytic function. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([17]): If 0 < 𝛼 ≤ 1. Suppose that 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions, 

                                                              𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
𝑥𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0 ,                                          (6) 

                                                             𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
𝑥𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                           (7) 

Then we define 

                                                                         𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)  

                                                                   = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0 ⊗ ∑
𝑏𝑘

Γ(𝑘𝛼+1)
𝑥𝑘𝛼∞

𝑘=0   

                                                                   = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 𝑥𝑘𝛼 .                                                        (8) 

Equivalently, 

                                                           𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼) 

                                                      = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0 ⊗ ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0   

                                                     = ∑
1

𝑘!
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

 .                                                           (9) 

Definition 2.5 ([17]): Suppose that 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic functions, 

                                                         𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
𝑥𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0  ,                                              (10) 

                                                        𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
𝑥𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                                (11) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑘

𝑘!
(𝑔𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 ,                                               (12) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑘

𝑘!
(𝑓𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 .                                                (13) 

Definition 2.6 ([17]): Let 0 < 𝛼 ≤ 1. If 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions satisfies 

                                                          (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) =
1

Γ(𝛼+1)
𝑥𝛼.                                                            (14) 
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Then 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are called inverse functions of each other. 

Some fractional analytic functions are introduced below. 

Definition 2.7 ([18]): If 0 < α ≤ 1, and 𝑥, 𝑥0 are real numbers. The 𝛼-fractional exponential function is defined by 

                                                                𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑘𝛼

Γ(𝑘𝛼+1)
= ∑

1

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                               (15) 

And the 𝛼-fractional logarithmic function 𝐿𝑛𝛼(𝑥𝛼) is the inverse function of 𝐸𝛼(𝑥𝛼).  

Theorem 2.8 (integration by parts for fractional calculus) ([19]): Assume that 0 < 𝛼 ≤ 1, 𝑎, 𝑏 are real numbers, and 

𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic functions, then 

           ( 𝐼𝑎 𝑏
𝛼) [𝑓𝛼(𝑥𝛼) ⊗ ( 𝐷𝑎 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]] = [ 𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)]𝑥=𝑎
𝑥=𝑏 − ( 𝐼𝑎 𝑏

𝛼) [𝑔𝛼(𝑥𝛼) ⊗ ( 𝐷𝑎 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]].       (16) 

Theorem 2.9 ([20]) (fractional L’Hospital’s rule): Suppose that 0 < 𝛼 ≤ 1, 𝑐  is a real number, and 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼), 

[𝑔𝛼(𝑥𝛼)]⨂ −1 are 𝛼-fractional analytic functions at 𝑥 = 𝑐. If  lim
𝑥→𝑐

 𝑓𝛼(𝑥𝛼) = lim 
𝑥→𝑐

𝑔𝛼(𝑥𝛼) = 0, or lim
𝑥→𝑐

 𝑓𝛼(𝑥𝛼) = ±∞, and 

 lim 
𝑥→𝑐

𝑔𝛼(𝑥𝛼) = ±∞. Assume that  lim
𝑥→𝑐

 𝑓𝛼(𝑥𝛼)⨂[𝑔𝛼(𝑥𝛼)]⨂ −1 and lim
𝑥→𝑐

( 𝐷𝑐 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]⨂ [( 𝐷𝑐 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]]
⨂ −1

 exist, 

( 𝐷𝑐 𝑥
𝛼)[𝑔𝛼(𝑥𝛼)](𝑐) ≠ 0. Then   

                                           lim
𝑥→𝑐

𝑓𝛼(𝑥𝛼)⨂[𝑔𝛼(𝑥𝛼)]⨂ −1 = lim
𝑥→𝑐

( 𝐷𝑐 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]⨂ [( 𝐷𝑐 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]]
⨂ −1

.                   (17) 

III.   MAIN RESULT 

In this section, we find some fractional integral in this article. Firstly, two lemmas are needed. 

Lemma 3.1: Let  0 < 𝛼 ≤ 1, and  −1 <
1

Γ(𝛼+1)
𝑥𝛼 < 1, then 

                                                         𝐿𝑛𝛼 (1 −
1

Γ(𝛼+1)
𝑥𝛼) = − ∑

1

𝑘+1
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+1)
∞
𝑘=0  .                                         (18) 

Proof  Since  −1 <
1

Γ(𝛼+1)
𝑥𝛼 < 1, it follows that 

                                                                (1 −
1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

= ∑ (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0  .                                                  (19) 

And hence, 

                                                            ( 𝐼0 𝑥
𝛼) [(1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

]  

                                                       =  ( 𝐼0 𝑥
𝛼) [∑ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0 ]  

                                                  = ∑  ( 𝐼0 𝑥
𝛼) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

]∞
𝑘=0   

                                                  = ∑
1

𝑘+1
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+1)
∞
𝑘=0  .                                                                            (20) 

Therefore, 

                                                           𝐿𝑛𝛼 (1 −
1

Γ(𝛼+1)
𝑥𝛼)  

                                                       = −( 𝐼0 𝑥
𝛼) [(1 −

1

Γ(𝛼+1)
𝑥𝛼)

⨂ −1

]  

                                                  = − ∑
1

𝑘+1
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+1)
∞
𝑘=0  .                                                      Q.e.d. 

Lemma 3.2: If  0 < 𝛼 ≤ 1, and 𝑘 is a non-negative integer, then 

        ( 𝐼0 𝑥
𝛼) [𝐿𝑛𝛼(𝑥𝛼)⨂ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+1)

] = 𝐿𝑛𝛼(𝑥𝛼)⨂
1

𝑘+2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

−
1

(𝑘+2)2 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

 .      (21) 
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Proof  By fractional L’Hospital’s rule and integration by parts for fractional calculus, 

                                       ( 𝐼0 𝑥
𝛼) [𝐿𝑛𝛼(𝑥𝛼)⨂ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+1)

]  

                                   = ( 𝐼0 𝑥
𝛼) [𝐿𝑛𝛼(𝑥𝛼)⨂( 𝐷0 𝑥

𝛼) [
1

𝑘+2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

]]  

                                   = [𝐿𝑛𝛼(𝑥𝛼)⨂
1

𝑘+2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

]
0

𝑥

− ( 𝐼0 𝑥
𝛼) [

1

𝑘+2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+1)

]  

                                   = 𝐿𝑛𝛼(𝑥𝛼)⨂
1

𝑘+2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

−
1

(𝑘+2)2 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

 .                                 Q.e.d. 

Theorem 3.3: Let  0 < 𝛼 ≤ 1, and  0 <
1

Γ(𝛼+1)
𝑥𝛼 < 1, then the 𝛼-fractional integral 

                 ( 𝐼0 𝑥
𝛼) [ 𝐿𝑛𝛼(𝑥𝛼)⨂𝐿𝑛𝛼 (1 −

1

Γ(𝛼+1)
𝑥𝛼)]               

           = −𝐿𝑛𝛼(𝑥𝛼)⨂ ∑
1

(𝑘+1)(𝑘+2)
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

+ ∑
1

(𝑘+1)(𝑘+2)2 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)
∞
𝑘=0

∞
𝑘=0  .                       (22) 

Proof            ( 𝐼0 𝑥
𝛼) [ 𝐿𝑛𝛼(𝑥𝛼)⨂𝐿𝑛𝛼 (1 −

1

Γ(𝛼+1)
𝑥𝛼)] 

                = ( 𝐼0 𝑥
𝛼) [ 𝐿𝑛𝛼(𝑥𝛼)⨂ − ∑

1

𝑘+1
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+1)
∞
𝑘=0 ]   (by Lemma 3.1) 

                = − ∑
1

𝑘+1
( 𝐼0 𝑥

𝛼) [𝐿𝑛𝛼(𝑥𝛼)⨂ (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+1)

]∞
𝑘=0   

                = − ∑
1

𝑘+1
[𝐿𝑛𝛼(𝑥𝛼)⨂

1

𝑘+2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

−
1

(𝑘+2)2 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

]∞
𝑘=0    (by Lemma 3.2) 

                = −𝐿𝑛𝛼(𝑥𝛼)⨂ ∑
1

(𝑘+1)(𝑘+2)
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)

+ ∑
1

(𝑘+1)(𝑘+2)2 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+2)
∞
𝑘=0

∞
𝑘=0   .              Q.e.d. 

IV.   CONCLUSION 

In this paper, based on Jumarie type of R-L fractional calculus, we solve some fractional integral. A new multiplication of 

fractional analytic functions plays an important role in this article. The main methods we used are fractional L’Hospital’s 

rule, and integration by parts for fractional calculus. In fact, our result is the generalization of the result in ordinary calculus. 

In the future, we will continue to use the above methods to study the problems in fractional differential equations and 

applied mathematics. 
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